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The governing equations of relativistic computational fluid dynamics (CFD) are
integrated numerically. The equation of state (EOS) for a gas at relativistic temper-
ature (the thermal energy of a gas particle is on the order of its rest mass energy) is
obtained as a polynomial approximation for a gas with the Maxwellian distribution
function. In contrast to previous investigations by other authors, in which the poly-
tropic index of a gas was accepted to be constant, here the relativistic dependence
of the specific heat is taken into account. The use of the proposed EOS facilitates
the relativistic CFD. The Riemann invariants are expressed in terms of elementary
functions so that the characteristic decomposition of the governing equations is ef-
ficient and natural. The full solution of the Riemann problem (Riemann solver) is
also given by elementary functions. In order to construct it numerically, a simple
transcendent equation, which relates the pressure and the velocity at the contact
discontinuity, should be solved using an iteration procedure, just as in nonrelativis-
tic CFD. So the Godunov scheme based upon the exact Riemann solver becomes
simple and efficient. 1D test results are presented, as well as an example of a 2D
simulation. (© 2001 Academic Press

1. INTRODUCTION

The governing equations of computational fluid dynamics (CFD) in the usual nonre
tivistic form (see, for example, [1-3]) are applicable as long as the velocity of hydrodynan
motion is much less than the speed of light. If the velocity of motion is comparable to t
speed of light, then the relativistic equations of motion are valid [1].

To complete the equations of motion, the equation of state (EOS) should be used.
EOS for a gas with the constant polytropic indexs surely the most popular model in
nonrelativisticCFD. It is a physically reasonable model which fits the actual paramet
dependencies for real gases within wide ranges of pressure, density, and temperatur:
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the other hand, this model also facilitates computations. A pressure may be readily expre
in terms of an energy density, and vice versa; the Riemann invariants are simple and |
be computed efficiently. The Roe-averaged state may be easily constructed. The solt
of the Riemann problem (Riemann solver—RS) may be computed by solving numerice
the simple transcendent equation, which relates the velocity and the pressure at the co
discontinuity, so the Godunov numerical scheme is simple and efficient.

Again, the attractive features of the EOS with the constant polytropic index, such
good conformity with the actual behaviour of the physical parameters of real matter ¢
the possibility of facilitating the computations efficiently, are valid only for nonrelativistit
CFD as long as the equations themselves are valid. At relativistic temperatures ano
EOS should be found which has the same attractive features as applieldfiwistic CFD.
The purpose of the present paper is to find such an EOS and to use it in constructing
Godunov scheme.

Relativistic CFD has been developed in the past two decades mainly for astrophys
applications. However, recent progress in the development of extremely powerful tat
top lasers has resulted in the appearance of alabaratory object, which can also be
simulated using relativistic CFD, namely, a super-bright laser pulse propagated througt
plasma. The focused laser intensity may be so high that the velocity of the plasma-parti
driven motion may be comparable to the speed of light for electrons and even for ions.
example of the simulation of the super-bright laser pulse propagation through the char
was reported in [4] with the use of the numerical scheme described in the present pap

Inmost papers, the equations of relativistic CFD are numerically integrated on an Eulel
grid using the finite volume method [5-10]; today, it is advanced using modern hig
resolution shock-capturing (HRSC) methods [11-16] (see also the recent review paper
and the papers cited there). Here we consider only the conservative Godunov sche
so that all the nonconservative schemes, such as the Glimm [18] method and quasi-li
formulations [19], are beyond our scope.

The simulations based on all known algorithms for relativistic CFD usually are rath
sophisticated. Even the use of the approximate Riemann solver (see [14, 19]) or simpli
TVD flux [20] still results in schemes which are much more complicated than their analc
for common nonrelativistic CFD.

From a formal point of view both nonrelativistic and relativistic CFD belong to the clas
of hyperbolic systems of conservation laws,

oU  9F;(U
v FM) _
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which, generally speaking, may be numerically integrated by just the same methods [2
Moreover, the relativistic CFD equations may be reduced to literally the same form as th
for nonrelativistic CFD. Nevertheless, in relativistic CFD the functigriU) is usually
implicit, or, equivalently, the recovery procedure for the primitive variables, such as t
pressure and the velocity, appears to be implicit. That is why even in using the expl
scheme for time integration, the iterative calculations should be performed in comput
the hydrodynamic flux.

The most advanced numerical schemes for nonrelativistic CFD are based upon
exact RS for hydrodynamic equations (see [2, 3]). The recent investigations [21,
show that in relativistic CFD the construction of the Riemann solver can only |
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reduced to numerical integration of an ordinary differential equation. The numerical sche
based on this approach can hardly be efficient, because the CPU time consumy
increases.

Simple analysis shows that many difficulties with relativistic CFD come from the u:
of the EOS with a constant polytropic index= 5/3 or x = 4/3. First, this EOS is not
applicable to the description of matter in relativistic motion, because the specific hea
this motion cannot be considered constant. It is well known (23, the problem in pa
graph 44) that the specific heat of a gas at ultrarelativistic temperature is twice as t
as that of one at a lower (nonrelativistic) temperature. Hence the polytropic index is
constant either. The dependence of the specific heat on the temperature is a direct ¢
guence of the relativistic dependence of the particle energy upon its momentum; thus
EOS with the constant polytropic index appears to be in direct contradiction to a relativ
principle.

This contradiction might be overlooked if at least the EOS with a constant polytror
index facilitated the computations. On the contrary, this unrealistic EOS appears to
one of the main sources of complexity for relativistic CFD. The difficultiesiiimer-
ical simulations which come from the EOS having nomericalaccuracy seem to be
unreasonable.

Since we are dealing with a physical problem, rather than starting from a well kno
mathematical model, we suggest a special form of the equation of state (EOS) for me
at relativistic temperature. The new EOS is much more realistic and practically coinci
with the EOS of a gas with a relativistic Maxwellian distribution function [24]. Actually we
are proposing nothing more than a kind of polynomial approximation for a well establish
physical model. Nevertheless this approach drastically facilitates the procedure for f
computation. Riemann invariants are givendsginary functionswhile for the generally
accepted EOS they must be found by solvingatinary differential equationwhen this
EOS is introduced, relativistic CFD becomes as simple as nonrelativistic CFD.

Thus, in the present paper, we show that in the case of an appropriate choice
relativistic EOS, the hydrodynamic description of the fluid motion becomes more 1
liable because the equation proposed is more exact than the EOS for polytropic
On the other hand, the relativistic hydrodynamic equations with this EOS become q
analogous to those for nonrelativistic hydrodynamics, and their numerical integratior
strongly facilitated, because any traditional scheme (sometimes even the existing c
for nonrelativistic CFD may also be applied to relativistic CFD with tiny changes. |
particular, the Riemann invariants and the RS are simple and may be efficiently usel
computations. The Godunov scheme described here is only one of the possible HF
schemes.

The layout of the paper is as follows. In Section 2 we first rewrite the governing eqt
tions of relativistic CFD as a hyperbolic system of conservation laws which coincides w
nonrelativistic hydrodynamics; then in Section 3 we suggest a new form of the equatior
state (EOS) and show its physical advantage and computational efficiency. The relat
between the conserved variables and the primitive ones are briefly discussed in Secti
We also rewrite the governing equations in a characteristic form and give the formulae
Riemann invariants in Section 5. Rankine—Hugoniot relations are given in Section 6.
solution of the Riemann problem scheme is described in Section 7. In Section 8, we pre
the test results for the Godunov scheme.
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2. THE GOVERNING EQUATIONS IN THE FORM OF CONSERVATION LAWS

The equations of relativistic hydrodynamics may be written in the form of conservati
laws (see [1]) as a condition for the 4-divergence of the momentum—energy Tnsobe
equal to zero:

oTE
axk

)

Using the space and time derivatives, one can rewrite Eq. (2) as the energy equation
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The components of the energy—momentum tensor are (see [1])
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wherew is the enthalpy density in a local rest framework (in which the given small volum
of the fluid is at rest)y, is the three-dimensional velocity vectéyy is the unit tensor, and
P is the pressure. Below the speed of lights accepted to be equal to unity, which may
be ensured by an appropriate choice of units for time and the spatial coordinates.

If the number of particles is conserved, which is true at least in the limit of a lo
(nonrelativistic) temperature, then the conservation law for the density is given by t
equation [1]

0 r d vy
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wherer is the density in a local rest frame of reference.

At an ultrarelativistic temperature, Eq. (6) becomes invalid, because the particle num
is no longer conserved, or more precisely, Eq. (6) is valid as an equation for variahieh
has no longer a sense of the rest mass density in this limit. This difficulty is irrelevant
the physically correct EOS is used, because in a universal ultrarelativistic EOS the pres
does not depend uporand Eq. (5) becomes mathematically independent of Eq. (6). Belo
we consider the requirement for the EOS to be independenatiiigh temperature (more
exactly, the pressure should be a functionuobnly) as one of the necessary conditions
to be fulfilled in choosing the EOS. Otherwise not only the EOS, but even the governi
equations are not well founded.

On introducing the Lorentz factor, mass density, and enthalpy densitly, as well as
the effective density,”

0, (6)

- r
p=ry, h=w/r, pzﬁs (7)
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Egs. (3), (4), and (6) may be rewritten in a form which coincides with nonrelativist
hydrodynamics,

0 Jo 0
9 9 9
— I+ —v| I |+—P| s | =0, (8
at 9 9
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J being the momentum density.

To close the system of conservation laws, finnitive variables, namely, the velocity
vector and the pressure, should be expressed in terms of the conserved variables. To d
we have to employ an EOS, which relates the thermodynamic pressure to some other
modynamic parameters which in turn should be expressed in terms of some combinat
of the conserved variables.

Two important points should be mentioned here. First, only Lorentz invariant combir
tions of the conserved variables can be used to find the thermodynamic parameters,
as

_(E4+ P22 p?

h2 ) ~:—1
02 P=ExP

(10)
because any thermodynamic parameter is Lorentz invariant. Second, it appeansytha
Lorentz invariant combination of the conserved varialhesstinvolve nonconserved vari-
able(s) also. In Eq. (10) the pressure is present in the right-hand side; the other Lore
invariant combinations can involug r, or o. That is why the procedure for finding the
pressure in relativistic CFD is usually implicit.

According to Eq. (10), it is convenient to consider the pressure in relativistic CFD a:
given function ofh? and; i.e., to use a relativistic EOS in a form as follows:

P= FN)rel(hzs ,5) (11)

Aslong asthe EO§,6|(h2, p) is given, the pressure can be recovered from the conserv
variables by solving the equation, resulting from Egs. (10)—(11),

N (E + P)Z _ J2 ;02
P= F>reI( ,02 'E TP . (12)
The velocity vector may then be found as follows:
J
e (13)

The hyperbolic system of conservation laws (Eq. (8)) coupled with the equations
recovering the primitive variables (Egs. (12 and 13)) is closed and may be numeric:
solved using any conservative scheme developed for this kind of system [2, 3]. Moreo
the conservative equations for relativistic CFD and for nonrelativistic CFD fully coincid
only the equations for primitive variables differ. In nonrelativistic CFD the pressure m:
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be considered as a functid?y, of the (Galilean-invariant) density and the internal energ
densitye, which can be expressed in terms of the Galilean-invariant combination of t
conserved variables= E — J?/(2p) (the total energyE in nonrelativistic CFD does not
involve the rest mass energy!), so that Egs. (12) and (13) become

P = Pu(p, E - J%/(2p)) (14)
J
V= —. (15)
0
Comparing Egs. (12) and (13) with Egs. (14) and (15), we see that the difference betw
nonrelativistic and relativistic CFD generally is not more essential than the differen
between nonrelativistic CFD using different equations of state. On the other hand,
particular choice of the EOS which allows the numerical analysis to be simplified, is differe
for relativistic and nonrelativistic CFD, because Eq. (12) differs from Eq. (14).

3. INTERPOLATED EQUATION OF STATE

Let us first discuss the general requirements for the relativistic EOS. For a relativis
temperature the fluid may normally be considered as an ideal gas. In addition the conse
particle density governs the pressure of gas at least for moderate temperature. Thus th
EOS may be used in the generally accepted form

P =rf(h), (16)

where the temperaturé = T/m related to the rest mass energy of one particle may b
considered a function of the enthalpy per unit mass.

This expression is quite general and valid for any ideal gas. The specific heat at
constant pressure related to one particle is given by the general formula

_d(w/r) _dh
T d(T/m)  df’

P 17)
For the sake of simplicity, the particular case of a gas with a constant specific heat had &
used in most of the previous papers on relativistic CFD. Taking into account the conditi
h — 1asT — 0 (the enthalpy density tends to the rest mass energy in this limit), one c
obtain the usual EOS with a constant specific heat

h—-1
f(hy=——, cp =const. (18)
Cp

This EOS is commonly used in relativistic CFD fgr = 5/2 (polytropic index isc = 5/3)
orcep =4 (k = 4/3).

However, the frequently used EOS (18) is only one of many possible choices and n
not be the best one. On one hand, Eq. (18) cannot even be consideygoraximatiorfor
a realistic EOS (see Fig. 1), since the two cases5/3 andx = 4/3 only give reasonable
upper and loweboundsfor it. An ultrarelativistic limit of Eq. (18) is also doubtful. These
facts are not surprising because it is well known that the specific heat at constant volu
cv = Cp — 1, at ultrarelativistic temperature is twice that at low (nonrelativistic) temperz
ture (see [23], the problem in paragraph 44). Thus the assumptiarpteatonstfor matter



GODUNOV SCHEME FOR GAS DYNAMICS 215

at relativistic temperature contradicts physical principles. On the other hand, the choic
an EOS in the form of Eq. (18) does not facilitate theoretical analysis and numerical sir
lations at all. Such a choice facilitates Eq. (16), rather than Eq. (12), which is actually to
solved.

In fact the model of gas witlee = constis the basic model fononrelativisticCFD,
because for common nonrelativistic gases this model, first of all, is sufficiently accure
Second, this model facilitates computation. Equation (14) can be easily solved, so
pressure may be easily expressed in terms of the density and the energy density, or the
primitive variables may be expressed in terms of the conserved ones. The Roe-aver
state may be easily found, so that total variation diminishing (TVD) numerical schen
are efficient. The Riemann invariants are simple functions of primitive variables. Hugon
relations at the fronts of shock waves are also very simple and are computed efficiel
so the Riemann solver is efficiently constructed, as the base for the Godunov scheme
others (see [2, 3]). But, again, these considerations are valid only for nonrelativistic CF

Now our purpose is to find the EOS fralativistic CFD which has the same advantages
as the EOS witlcp = constfor nonrelativistic CFD. We require that this EOS be exac
enough within a wide range of physical parameters, and that the relativistic CFD whicl
based on this EOS be easy and efficient. Here we show that such an EOS does exis
moreover that it differs from Eq. (18).

Rather general and simple considerations allow us to establish the form of the E
First, the form of Eq. (16) seems to be mandatory, so only the fundtidn may be
the subject of choice. Then for cold matter the enthalpy involves only the input from t
rest mass energy, so the requiremdnt> 0 ash — 1 should be fulfilled for massive
matter.

For an ultrarelativistic temperature, the EOS is well established theoretically. If particl
antiparticle pairs are created intensely via the particle collisions, or if the main input to
enthalpy is due to radiation energy, or if the thermal energy of the particles is much gre:
than their rest mass energy—in all these cases the universal ultrarelativistic EOS is g
by the formula [1, 23]

(19)

As we have already mentioned, the dependence upanishes from the EOS at this limit.
Equations (3)—(5) are closed by Eq. (19) and become independent of the equation for de
at relativistic temperature. The latter equation may even be invalid, because in pair cree
the rest mass energy is not conserved. Thus the necessary physical requirement for the
to have a correct ultrarelativistic limit is given by the conditibn—~ h/4 ash — co. It
should be mentioned that the best choice among the equations of state is Eq. ¢28)3fdr
(x = 4/3), which still gives the EO® = ‘—11(w — r), which does not coincide with Eq. (19),
although the specific heat in Eq. (19) is the saope= 4.

This is why a reasonable interpolated formula fomay be proposed which embraces
both of two limiting cases,

f(h) = ah—b/h, (20)

wherea = constandb = const
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In any conservative numerical scheme for relativistic CFD, the EOS is applied to co
puting the numerical flux via the interface between the two adjacent cells, so the value:
a andb should be considered to be constant only within the comparatively narrow rang
of the physical parameters governed by two rather close sets of hydrodynamic varial
in the two adjacent cells. It is obvious that by usimg fitting constants one can readily
approximate any physically reasonable EOS within the narrow range of parameters
take into account any interesting physical effects, such as the presence of two or more
of particles, radiation, etc.

It is also interesting to consider the simplest possible EOS, Eg. (20), in case the fitt
constanta andb are actually constant and do not depenchaat all. Then the condition
f — h/4 ash — oo givesa = 1/4, and the conditiorf — 0 ash — 1 givesa = b, so
that the EOS becomes

f(h):i(h—]'). (21)

h

We thus obtain the simplest possible EOS which meets all general physical requireme
This EOS dramatically facilitates both theoretical analysis and computations in relativis
CFD. Here we show that the theoretical advantage of such an approach does not cor
the cost of accuracy. For a physical model of a gas, of particles with the same rest n
energym, such as a nondegenerated electron—positron plasma, the condition of thermc
namic equilibrium results in a well known EOS, which almost coincides with Eq. (21), tF
discrepancy being surprisingly small.

Indeed the ideal one-fluid hydrodynamics considered here is appropriate only for
description of gas motions in which the gas is close to local thermodynamic equilibriu
As a result of the condition of thermodynamic equilibrium the distribution function o
such a gas is Maxwellian. On averaging the particle energy over a relativistic Maxwelli
distribution function (see problem 2 in paragraph 38 in [23]), one can readily represent
enthalpyh as a function of the temperatufgm = f as

Ki(1/1)

h=af 4 2/
Ka(1/f)

(22)

where K1(z) and K,(z) are modified Bessel functions of the second kind (McDonal
functions, which also may be reduced to Hankel functions with imaginary argument
Equation (22) may be also derived using Egs. (235) and (231) in [24, p. 396].

Equation (22) has been used in some papers for fine relativistic CFD simulations (s
for example, [25]) resulting in further sophistication of the flux computation procedure.
appears that our simplest EOS, Eq. (21), ensures a surprisingly good approximation fol
function Eq. (22).

In Fig. 1 the curve represents the theoretical EOS, Eq. (22), which is valid for moderat
relativistic temperatures. The ultrarelativistic Eq. (19) is also shown as a theoretical limit:
very high temperatures. Interpolated EOS Eq. (21) is displayed as a solid curve. This cl
matches very well with the curve for Eq. (22) and also has correct asymptotic behavior at
ultrarelativistic limit. Thus our interpolated EOS is rather close to a physically reasonal
model of the gas with a relativistic Maxwellian distribution function.

The dependencies for commonly accepted EOS Eq. (18) with a constant polytropic in:
are shown by two straight lines fer=5/3 andx = 4/3. One can see that such an EOS



GODUNOV SCHEME FOR GAS DYNAMICS 217

h
14 + 4
1, 2 -- theoretical EOS
-1
12 + 3 -- the interpolated EOS )
10 4, 5 -- constant polytropic index -~
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FIG. 1. The dependence f(h) for different equations of state. Curve24f + 4,521(11/:)’ —exact relativistic

EOS for an ideal gas with the Maxwellian distribution function. Linef2= g—the universal ultrarelativistic
EOS. Curve 3:f =% — % Lines 4 and 5,f = 3(h—1) and f = Z(h — 1), respectively, correspond to the

. 4 4y
constant value of polytropic indexes= 3 andx = 3.

cannot be considered accurate, so the difficulties arising from use of this EOS (see be
are not compensated.

Inallthe formulae inthe present paper, the valesb = 1/4 areimplied, corresponding
to the choice of the EOS in a form of Eq. (21). Nevertheless, all the derivations are fulfill
for the more general case of Eq. (20).

More strict theoretical analysis shows that at rather low, essentially nonrelativistic te
peraturelT « 0.1 m, there is some distinct discrepancy between the values détheative
of function f (h) (rather than in the values of the function itself) for the interpolated EOS ar
for the theoretical EOS. Namely, the interpolated EOS, Eq. (21), gives the low-temperal
limit value for the specific heat ap — 2_1:,1 = 2 ash — 1 (aformula

Cp 1
_ 23
K= -1 1-2a (23)

establishes the correspondence with the nonrelativistic limit and is used below). The v:
cp = 2 corresponds to the polytropic index= 2 that is pertinent to astrophysical plasmas
in a magnetic field. In the absence of the magnetic field the valug ofiay actually be

a little bit higher € = 5/2 instead otp = 2); nevertheless the difference is unimportant
and is ignored here. Otherwise, due to the presence of two fitting constants in interpol:
EOS Eq. (20), for more accurate simulations one can aflamdb to be slowly varying
functions ofh, tending, for example, to/b at lower temperatures and tg4lat higher
temperatures. Then the specific heat at low temperature beogmess/2; any other
physically reasonable value may also be achieved using different values of fitting parame
a andb and at the cost of slightly degrading efficiency.
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4. PRIMITIVE VARIABLES RECOVERY BY USE OF THE INTERPOLATED EOS

Using the interpolated EOS, Eq. (20) the procedure for computing the primitive variab
and then the flux becomes simple and straightforward. On representing the general
EOS, Eq. (16), in the form of Eq. (11), one can readily reduce Eg. (12) to the equation
findingIT = E — P as follows:

1
l'Iz—l'IE—,o\/l'Iz—sz(—\/HZ—J2> =0. (24)
0

Now the crucial nature of the choice of the EOS becomes obvious. With the usually accey
EOS with a constant polytropic index Eq. (24) becomes irrational and may be solved o
by using an iteration procedure or may be reduced to a fourth order algebraic equatior
this way it is difficult to ensure that the velocity is subluminal due to finite error of iteration:
the code becomes more complicated and CPU time-consuming.

On the contrary, on using the interpolated EOS, Eq. (20), the Eqg. (24) becomes

(1—a)I1> — TE + aJ® + bp? = 0, (25)

and then it can be explicitly solved:

1
21—a)

P=IT-E= {\/E2—4(1—a)(aJ2+bp2)—(1—2a)E}. (26)
For the simplest interpolated EOS, Eqg. (21), one camapttb = 1/4 into Egs. (25) and
(26).

This equation should be solved only for the physically compatible set of the consen
variables. Since the total energy must not be less than the rest mass enetgyzi.&,,and
P > 0, the first of Egs. (10) gives

2> <J2 T ng), (27)

resulting inl1? > E2 > J? and then/? < 1, P > 0. For exact values of the conserved vari-
ables the condition Eq. (27) is a direct consequence of the pressure positivity; neverthe
for approximate values of the conserved variables, obtained from numerical simulatic
checking the condition Eg. (27) is sometimes worthwhile. Its fulfillment automaticall
ensures both the positivity of pressure and the subluminal value of velocity (see Eq. (1

It is also worth mentioning that the requirement that the velocity be subluminal is weal
than a pressure positivity condition, so if the scheme is positively conservative [26], t
ensures the relativistic property of the velocity in relativistic CFD. We see that having
numerical scheme that is positive conservative, which strongly depends upon the chi
of the first order monotone numerical (see [26] for more detail), is of greater importan
for relativistic CFD. The Godunov scheme is proven to have this property, which is
additional argument in favor of it.

5. CHARACTERISTIC FORM OF THE RELATIVISTIC CFD EQUATIONS

The advantage of the interpolated EOS becomes even more important as we pro
to the construction of truly HRSC schemes. The first step in this process is to constl
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a characteristic decomposition of the governing equations and represent them in a
dRi /ot + 1ij (AR /9x) = 0, and to find the Riemann invarian® and the characteristic
speeds.;. These building blocks are used in the Godunov scheme, the Osher scheme,
almost all the other high-resolution schemes to some extent.

While for the EOS with a constant polytropic index the ordinary differential equation fi
Riemann invariants has not been integrated in analytical form[22], the use of the interpolz
EOS ensures closed and simple analytical formulae for all Riemann invariants.

Here we consider 1D relativistic flow, depending uponxheoordinate and the timie
All three components of velocity are taken into account.

As long as the particle number is conserved and the equation for the density is valid,
system of conservation laws, Eq. (8), has five Riemann invariants. Among them there
three invariants, propagating with a velocity= vy,

ad ] h)/VJ_ _
(5“@)( A )_o, (28)

wherev, = (vy, v;) are the velocity components which are normal to xaxis, and

o is an entropy per unit of mass, or any monotone function of this. Further we den
R, = hyv, =J, /p. Along the linedx = v4dt the differential of entropy is zero accord-
ing to Eq. (28). Due to thermodynamic considerations, the equdtios: 0 is equivalent
to

rdh = dP. (29)

On integrating the latter equation using the EOS Eqgs. (16) and (20), one can represer
condition of entropy conservation along the lave = v,dt asd Ry = 0, where the Riemann
invariant (an arbitrary monotone function of the entropy) may be chosen in the followi
way:

b= ROPl_Z'a. (30)

The adiabatic law, Eg. (30), coincides with that for nonrelativistic gas with a conste
polytropic indexx on substitutingl_LZE1 — k (see Eq. (23)).

In order to find two more Riemann invarian®. for perturbations, propagating with
a sound velocity right and left hand side, respectively, one should consider a flow
which the other invariants are constaRt; = const and Ry = const In isoentropic mo-
tion the gradient of pressure may be found as (see Eq. ®)=r - Vh. As long as
R, = const the substitutionoy = tarh¢ gives alsoyvy = I sinh& andy = I cosh¢,

where
h' = \/h2+Ri. (31)

With these denotations, the equations for density and velogigee Egs. (8), (9)) may
be written in a simple form as

or’cosht  ar’sinhg
ot ax
oh’sinhg  ah' coshe
T M

0, (32)

0, (33)
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where
r'=ph'. (34)

This approach follows a way of solving the analogous problem in the particular ca
R, = 0 given in problem 1 following paragraph 134 in [1]. In this particular case a
the primedvariables in Egs. (31), (34) coincide wittonprimedones. Proceeding to the
characteristic form of Egs. (32), (33), one can readily find

0 v tcCp 9 dh
— |R. =0, dRL =d& £ —, 35
(at * 1iuxcgax> - Re = df chy (35)
whereR.. are the Riemann invariants which are transported at sound velocity with resp
to the gas, where

) r dh\ Y2
G = (ﬁ dr’) (36)

is the speed of sound, transformed due to the transverse Doppler effect. The del
tives in Egs. (35), (36) should be taken at the constant valués, odnd Ry. So using
Egs. (29), (31), (34), and (36) we can obtain two equivalent expressions for the sol
velocity

_ h" dp do

/'N—2 N2
C =14+ —-—=1+()"— 37

(C) +,5dh’ +()dp (37)
and, using the first of these representations, derive a general formula for the incremer
the Riemann invariant:

cLdp
-5

S

dR, =d& + (38)

This formula is valid for any EOS. In nonrelativistic limit it reducesd®. = dvy +
c.dp/p and coincides with that for nonrelativistic hydrodynamics. Then the use of t
interpolated EOS, Eq. (20), results in simple and efficient formulae for the sound spee«

(c)?=Ci1+1/G), (39)

where a constar®; and a combination of the hydrodynamical paramegis introduced

as follows:
l1-a a1-aP
Ci=4/——, G= -, 40
1=V a (1-2a)(@aR% +b)p (40)

Now we can perform the integration of Eq. (38). From Eq. (30) we éipgds = (1 —
2a)dP/P, and Eq. (39) givesdc, — (1 — a)c.’]JdP/P = dc,. The Riemann invariants
may finally be found as

R.=£(+ [, / %a tanh—1<, / l%aac;) - tanh—lc;} (41)
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where the denotation tanh(y) = 1 Iog(1+y) means inverse hype rbolic tangent, rathel
than Y tanhly).

Thus we obtain direct analytical formulae for the Riemann invariants. They are simple ¢
efficiently computable due to the use of the interpolated EOS. By comparing this with |
results of [22], one can see that, using the EOS with a constant polytropic index, they obta
an ordinary differential equation for finding.. instead of our explicit equations Eq. (41).
So instead of computinB.. explicitly, in this case, it is necessary to integrate numericall
the latter differential equation each time the Riemann invariant has to be calculated.
approach based on the interpolated EOS is much more efficient.

Using a formula tanht(y) = sinh (y//1 — y2), one can rewrite Eq. (41) in the fol-
lowing form:

=& +[Cy sinh(v/G) — tanh 1 ¢]. (42)

Equation (42) is useful for computations at very high values of pressure, when the so
velocity is so close to its limiting value/TC; so that the calculation of the first inverse
hyperbolic tangent in Eq. (41) becomes impractical.

The incremental relation, Eq. (38), for the interpolated EOS may be used in a form
follows:

(1-—2a)c,dP

dR. =0+ (1-c2)P

(43)
Within the Godunov scheme this formula should be used for finding the preliminary val
of the pressure at the contact discontinuity to start the iteration procedure for finding a rr
accurate value for this.

6. SHOCK WAVES IN A GAS WITH AN INTERPOLATED EOS

Let us consider a shock wave with a front perpendicular to thexaxddl the velocity
components are not equal to zero in the general case. It is important to emphasize
in choosing the frame of reference one can ensure that the perpendicular componen
velocity become zero—but the shock wave front in this frame of reference generally is
longer perpendicular to theaxis. Instead, let us choose a frame of reference moving alor
the x-axis with a velocityD = tarh(d) such that in this new frame of reference the front
would be at rest (the equation of the front surface is cons}. The velocities in this new
frame of reference are denoted by the upper ind2x

First, the Riemann invariani®, = hyv, not only remain continuous at the shock wave
front, but they also do not change at the transition to a new frame of reference, bkeésuse
Lorenz invariant anghv, are transverse components of the 4-vector. Foxthemponent
of the velocity the substitutiony 1 = tanh(p 1), va 1= tanr(gé ) is used. According to
the relativistic law for the velocity addition, the values at the moving frame of reference «
as follows:

£ =01 —d. (44)

Equation (44) allows us to find the velocity of the shock wave and that of the gas beh
the shock front

d=g-&", & =6-&"+&", (45)
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the variableféD) andg{D) being the functions of the shock wave intensity which are givel
by the Taub theory for relativistic shock waves [1].

According to this theory, the values of enthalpy and presBuesnd P; behind the shock
wave front are connected by so-called Taub adiabat with the preshock tglaad Py,

h? —h2 = (Py— Po) (51" + 55Y); (46)

this relationship involves only Lorenz-invariant values, so it does not depend on the choic
the frame of reference. With the interpolated EOS one can readily findiRat b + P/p.
Using this formula for representing the right-hand side of Eq. (44) in ternfsasfd g, one
obtains

- . Q—aP +abk

= o2 1 T20 47
=P e T d - aR (47)

It is interesting to mention that on substitutipg= p and (1 — 2a)~! — «, the Eq. (47)
fully coincides with the subsequent relationship for nonrelativistic gas with the conste
polytropic indexx.

This analogy is also valid for the velocities ratio. Applying conservation laws for th
energy and mass in a frame of reference, co-moving with a shock front

D). (D D D)\2 (D D)\2 (D
ry” e = oy’ s hara (1) v = horo(v5”) uig - (48)

one can readily find (the first equation squared in Eq. (48) is divided by the second one

)((Eln @ _ aPL+(A—-a)by (49)
oy A1 A-aPi+ak’

which is again in full accordance with the corresponding relationship for nonrelativist
shock waves in a gas with a constant polytropic index.
From the momentum conservation law

2
hlr1<V1(D)U)((|f)) + P = horo()/o )Uf(o)) + Po, (50)

using Eqgs. (48), one gets the formula fgp’

(™ (D)) __Ph-Rh (d-aP+ah (51)

Yo o r2(3ot—prY)  (1—2ayreho

Taking into account the relationshig® v\’ = 1/1+ R3 /h2sinh(&{), one can finally
obtain

= Fsinh? Co Po(l— é%) (52)

here minus and plus are for the shock waves, moving to the right and left hand si
respectively. For weak shock waveR, ~ Py and tar s(D) A FCy,. For strong shock
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wavesgéD) — oo and the velocity tends to the speed of light. In a quite analogous mann

the formula fors. is

aPi+ (1—a)R

£P = Fsinhri ¢ .
' ! Pl(l_ s%)

. (53)

At the limit of low temperatureq < 1, sinhé = v,a = b = 1) these formulae reduce
to well-known relations for nonrelativistic gas (see [1], formulae Eg. (89.4)).

Thus, as long as the preshock parameters, suph, @, andR?, as well as the pressure
behind the front of shock wave;, are known, then one can find first Gsing Eq. (47),

then sound velocities, and after this the velocitdeendé; using Egs. (45), (52), and (53).

7. THE SOLUTION OF THE RIEMANN PROBLEM

The advantage of the exact formulae for the Riemann invariants is that in using th
formulae one can construct exact, nonlinear, and explicit solutions of the CFD equatic
These solutions, referred to sinplewave or Riemann wave solutions, may be obtained i
all the Riemann invariants except one (eitRReror R_) are assumed to be constant. So the
right simple wave is governed by the equations

8R++ vx +C5 IRy
at  l+wgc, ax

£ +tanhc,(G) = R_r + Cy sinh 1/G, (55)

0, (54)

where the inde>R marks the value of the Riemann invariants at some arbitrary state (“rig
state”), belonging to the right simple wave. Then, for the left wave, the analogous formu
become

IR_ vy —C; IR
=0, 56
ot * 1—wvyc, 09X (56)

£ —tanh 'c(G) = Ry — Cysinht/G. (57)

In Egs. (54-57) the sound velocity should be expressed in teri@s wéing Eq. (39).

Itis important to mention that the left-hand side of Egs. (55) and (57) may be represer
as taniir,), wherei, = (vx £ ) /(1 £ viCy) are the propagation velocities for the right
and left waves correspondingly, which appear to be monotonic functions of pressure
order for the simple waves not to break in the course of the time evolution, the propaga
velocity should be a monotonic increasing function of the spatial coordinatée obtain
that in the right simple wavep(x) should be an increasing function; in the left simple
wave, p(x), should be a decreasing function. In any case, the pressure increases towar
direction of propagation, which is why nonbreaking simple waves are always decompres:
waves. We do not use here the common term “rarefaction wave,” because the depend
on the observable densiyin the original frame of reference is sophisticated and is nc
discussed here.

An important particular simple decompression wave is the centered decompression w
in which all the physical quantities depend upon time and spatial coordinates only in
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combinatiord = x/t. For the right wave, Eq. (54) gives, in this case

_netg
o 1+UxC/S

: (58)

so Eq. (55) allows us to excludg = tanh&¢) and find the spatial distribution of pressure,
density, and sound velocity:

¢ |Ci?—c3 p\T= P2 G
R, =Rig, — 1SR=<~> =(>= —, 59
1 1R C,SR CIZ — C’SZ SR PR GR ( )
VG = sinh[C *(taniT™ 6 — R_g)]. (60)

In the nonrelativistic limit Eq. (60) reduces ¢9 = C;%(0 — vxr — CLp) + C.g With CZ =
ﬁ—fi and conforms to the solution for the gas with a constant polytropic index.

When the sound speed is found, the velocity may then be obtained in the followi
way:

£ =tanhtg — tanh* c.. (61)

Two problems concerning the spatial distribution are of practical interest. First, the :
of hydrodynamic parameters at some given valug afid for the given right state may be
directly obtained using Eq. (49). For example, let us assume tha). On substituting the
latter value in Eqg. (60) one can find that in this state

5 \T= P)a sinh[ — C;'R_g|
R, =RR, — == = , 62
. R (PR) (PR +/GRr (62)
vy = —Cg. (63)

Second, the velocity of the interface gas-vacuum may be found from Eqgs. (60) and (¢
At this interface the pressure and density both tend to zero, so that

£ =tanh0 = R_g. (64)

The solution of Egs. (60) and (61) is defined only for the value8 ekceeding those
satisfying the condition, Eq. (64). For lower valueséothe formula in Eq. (60) gives
nonphysical negative values of density and pressure. Below we use Egs. (62)—(64) wi
the Godunov scheme for various particular cases.

Now we have a set of exact nhonlinear solutions for the relativistic CFD equations, nam
the decompression simple waves and shock waves. Along with the contact discontin
(CD), which does not require special consideration, being fully analogous to that in non
ativistic CFD, this set is sufficient for constructing a solution of the Riemann problem fi
relativistic CFD equations.

The formulation of the problem is standard. At the time instaatO the step-like initial
condition is assumed for a 1D version of Eq. (8):

aU(t, x) n aF(U)
ot 0X

=0 UO,x)=U,x<0, UDO, x)=Ug,x=>0. (65)
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The initial conditions make sense only if the condition in Eq. (27) is fulfilled for both th
two setdJ_ andUg. In this case the two settyy andUg define two sets of primitive variables
WL = (oL, &, RLL, P) andWg = (pr, £€r, R1R, Pr). A solution of the problem is also
given here via the primitive variables.

The solution of the Riemann problem is surely self-similar and depends bronly
through the combinatiof = x/t. So the solution of the Riemann problem shownin Eq. (65
may be denoted ddrs(W, Wg, 6).

Let us begin with the case in which the differences in pressure and velocity are b
small:£. ~ &g andP_ &~ PR. In this case the flow dt> 0 involves the CD and two step-
like sound waves, propagating to the right-hand side and to the left-hand side outw
from the CD. Let us find two sets of primitive variables at the left and right margins «
the CD,W® = (59, £© R, P@)andW = (5, £© R, P©), the pressure and
x-component of the velocity as well §& being continuous through the CD, as usual. In
any caseR}, = Riw, M = L, R, here and below.

The sound wave propagating to the right is a particular case of a right simple wave. -
relationship in Eq. (43) for the Riemann invaridit may be written for a small amplitude
wave in the form of a finite increment relation:

- 2a)c,g(P© — Pg)

© _
£ (1-cZ)Pa

(66)

In an analogous manner, for the left simple wave the relation for the invdRiagives

(1-2a)c, (PO - P)
(1-cd)P

fL-£9= (67)

The sum of Eqgs. (66) and (67) gives the equation for finding the pressure at the CD:

(1 2a)cp(P® — Pr) | (1-2a)c, (PO — P
(1-c&)Pr (1-c3)P

&L —&r= (68)

Itisimportantto mention that Eq. (68) involves the dependence on the right and left veloci
only in the form of the dependence upon the relative veldgity £g. This pointis a direct
consequence of the relativistic invariance of relativistic CFD equations and in genera
independent of the choice of the EOS and the assumption of small wave amplitudes.

On finding the pressurB© from the linear equation in Eq. (68), the full sets of hydro-
dynamic parameters at the CD may then be computed. This point is significant bece
the application of the linear approximation to the Riemann solver for sufficiently smoc
numerical solutions is a usual practice resulting in higher efficiency. We see that this <
is just as simple for the relativistic CFD equations as for nonrelativistic CFD.

So now we can proceed to the more difficult case, when the jumps in parameters
arbitrarily large.

The equation for finding the pressure at the CD is

> W(P®, Py, pm, Rin) =& —&r, (69)
M=L,R

where the function®(P©, Py, pm,Rim), M =R, L, can be found by combining
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Egs. (41) and (60) foP© < Py as
W (P, Py, pm,Rim) = Cisini? (1/GY}) — tantrt ¢y,
— Cysinhi(y/Gw) + tanh t cop, (70)
where the density near the CD is
~(C) _ ~ P(C) P 1-2a 71
P’ = pwm (P /Pu)" " (71)

Then, forP© > Py one should use the formula fé(P©, Py, om, Rim), which comes
from the Hugoniot relations in Egs. (36), (37) as well as from Eq. (29):

a+(1-aP©/Py

¥ (P9, Py, pm. Rim) = SinhlcsM\/

(1-c2y)
—sinh ¢, \/ 2 +((l _("")( F;“;z/)P(C) : (72)
1- CSCM

Density at the CD is given by Eq. (47):

~©) _ ~ (1_a)P(C) + aPuy
PM = PMAPO + (1—a)Py

(73)

The sound velocities$, for both casesP© > Py andP© < Py, are expressed via©,

5\, andR y by Eq. (39).

The root of Eg. (69) can be readily found using the Newton—Raphson numerical pro
dure. An analogous algorithm is widely used in the Godunov numerical scheme implem
tations for nonrelativistic hydrodynamics and is published, for example, in [3]. The uniqg
nonnegative solution foP(© exists if a vacuum cavity does not form in the Riemann prob
lem solution. The condition for this can be readily obtained by combining Eq. (64) and t

analogous equation for the left decompression wave:

R, —Rr=0. (74)

If Inequality (74) is not fulfilled, then without solving Eq. (69) one can construc
the solution of the Riemann problem consisting of the two decompression waves ar

vacuum cavity between them, the left and right gas-vacuum boundaries having
coordinates

6 =tanhR, , 6% =tanhR_ g, (75)

respectively. Thus, the left decompression wave region is governed by the condition

_ C/
SLT5SL g < tanhR, (76)
1- VLG
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while the right decompression wave is placed within the rangeasf follows:

UR + C/SR

tanhR_gr < 8 < .
A 14 vrCeg

(77)

On the contrary, if the condition in Eq. (74) is fulfilled and the numerical value®fis
obtained from Eq. (69), then the normal velocity of the CD can be found as

@ =& —W(PO P, pL.RiL) =&+ ¥ (P, Pr dr Rir), (78)

and the values 0y andR, y are obtained in the course of determining the numericz
solution of Eq. (69). Eq. (78) also gives the coordinate of the €P:= tanhz©. Then
the values of the hydrodynamic parameters in the solution of the Riemann problem ca
found for anys.

If P© > Py, then to the M-side of the CD there is a shock wave propagating outwa
from the CD. The shock wave front coordinate is (see Eq. (52))

(79)

. a+(1-aPoO/Pp
93W=tanh<é§M ismh‘lc’sM\/ +( ) /M>,

(1- CQZM)

where the signt is for M = R, L respectively. The two constant hydrodynamic state:
W = (5. 6@ R, P©)andWy = (5m, Em. Rim. Pw) are connected through the
shock front.

If P© < Py then the decompression wave propagates to the M-side outward from
CD, connecting the two constant hydrodynamic statés = (5, £©, R(,, P©) and
Wwn = (oM, Em, Rim, Pw). The decompression wave region is governed by the conditic

tanhg© + ¢(© c.
é——i_s/(RC) <0 < LS/R (80)
1+ tanhg©cgg 1+ vrCsR
for M = Rand/or
- tanhe© — ¢©
WGy -G (81)

1-wey 1 — tanhg©c.

for M = L. The spatial distribution of the hydrodynamic parameters within the decompre
sion waves is given by Egs. (59), (60).

Thus the full solution of the Riemann problem is described here. For the given |
and right hydrodynamic statdd, , Ur satisfying the condition in Inequality (74), only
one simple transcendent equation, Eg. (69), should be numerically solved for finding
pressure at the CD. After this the hydrodynamic parameters for any gigan be found.

8. GODUNOV SCHEME AND TEST RESULTS

As long as the numerical procedure for constructing the exact Riemann solver is fou
the first order Godunov scheme may be formulated in the usual way [2, 3]. Consider
simplest case of a 1D problem at an equally spaced g¢tix).(The conserved variables
averaged over thigh control volumeJ!' may be updated through a time st&p, satisfying
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the Courant—Friedrichs—Levi (CFL) stability condition, by using a standard finite volun
method,

At
UMt = U + Ax (Fi—y2 — Fiza2), (82)
where the numerical flux for the Godunov scheme is
Fi_1/2 = F(Urs(Wi_1, Wi, 0)), (83)

with Ugrs(W_, WR, 0) again being the solution of the Riemann problem, as denoted aboy
andW; = W(UD).

Let us consider the procedure for computing the first order numerical flux, step by st
The sets of the conserved variablg® andU;", ; are employed to find the numerical flux
Fi+1/2 as left and right hydrodynamic states. The transverse invafiants J, /p can be
found immediately.

Then the values of pressure as well as the valuds stiould be recovered for both sets
using Eq. (24), as long as the interpolated EOS is used. Otherwise the general equatit
Eq. (12) should be solved for both the conserved variable sets.

After finding IT, the densityo"may be found using Eqgs. (10). The normal component o
the velocity can also be found from Egs. (13), or even better, the values of the param
£ = sinh (3, /(IT? — J2)) can be calculated.

To apply the exact Riemann solver, the constangdb should be known. They can
be chosen in advance for all the computational domains, if the interpolated EOS is us
otherwise the values of these constants should be chosen separately for each face ¢
control volume depending on the hydrodynamic states in the adjacent cells. Although
latter method is possible, we used oaly= b = 1/4 in all the test computations.

Then the procedure for computing the primitive variable&¢éat the face” (ab = 0) is
straightforward. On solving Eq. (69) numerically one can find the sets of primitive variabl
W at the CD. Then depending upon the signs of different characteristic velocities, 1
state at? = 0 may coincide witH\N(,\j) or Wy. The only case in which some additional
computations are needed arises if the coordinate valud belongs to the decompression
wave. In this case, the values of the primitive variables are calculated using the formula
Egs. (62). If the condition Inequality (74) is violated, then the line 0 may also appear
to be inside of the vacuum cavity, resulting in a zero numerical flux.

Thenthe conserved variables should be recovered for the state at the face and the num:
flux Fi_1/» may be calculated. After all, the formula in Eq. (82) with the calculated numeric
fluxes allows us to update the numerical solutifrthrough one time step.

The results for the first order test simulation are shown in Fig. 2 by the triangular symbc
The 1D computational domain©x < 1 consists of 100 cells; the initial state was= 1,
v=0,andP =2for0<x<0.5,P =1for05<x <1. Inall the tests the time step was
chosen according to the CFL stability condition with the CFL nun@ielt = 0.7. The den-
sity distribution for the time instart= 0.7 is presented. The first order numerical solution
is stable and monotone, but of course its accuracy is not sufficient for practical purpose

The way to get the second order extension of the Godunov scheme is ambiguous.
apply the scheme proposed in [27]. Here we follow the formulation given in [28]. Accordir
to the terminology used in [3], the scheme may also be referred to as the MUSCL—-Hanc
scheme.
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FIG. 2. The result of a 1D test simulation for a shock tube problem. Triangular symbols are the simulati
results for the first order Godunov scheme; diamonds are the same for the second order scheme; and the li
theoretical distribution obtained from the solution of the Riemann problem.

The two step predictor—corrector scheme is constructed in the following way. In ordel
achieve second order spatial accuracy, the spatial differences of the primitive variables
calculated and limited for each control volume,

1
SWi = SLWiss — Wi, Wi = Wi_y), (84)

where the limiter functiorL (a, b) is applied to obtain nonoscillating numerical solutions.
The symmetrig-limiter function which is described in [2, Eq. (21.3.35), p. 543] is used
To achieve second order temporal accuracy, one can calculate first the predicted valu
the conserved variables:

~ At

O = U7+ 2 (F(WF — 5Wi) — F(W] 46w ) ). (85)

After this the predicted values for the primitive variables are recov&igd= W (U!). Then
the second order numerical flux is calculated as

1 1-~ 1 1.
Fi_12 = F(URS<2Wi—1 + EWi—l + Wi _1, EWi + EWi — W, 0)) (86)
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FIG. 3. The result of a 1D test simulation for a shock tube problem with a stronger shock wave, second or
scheme.

which allows us to update the numerical solution using the general conservative numer
scheme in Eq. (82).

For the same test problem as treated above using the first order scheme, the resul
shown in Fig. 2 (diamond symbols). The resolution is reasonably improved.

The results for the test problem with a stronger shock wave are given in Fig. 3. T
initial conditions for a shock tube problem & 0) are chosen as follow®. = 100,p = 10
for the left constant stateé? = 1, p = 1 for the right state. The initial position of the
discontinuity is between 40 and 41 zongs 0.4), and the total number of zones is 100.
The value ofg in a limiter function isg = 1.7. The simulation data for the density are
given for the time instant = 0.6 and the exact solution for the corresponding Rieman
problem is shown for a comparison. The quality of the test results seems to be sufficiel
high.

To compare the quality of the numerical results with those obtained, for example,
[29, 30], we also performed the simulation for a test above with a greater jump in presst
P =133 at0<x<0.4andP = 10%at 04 < x <1, the jump in density being the same.
This test problem was treated in [29, 30] for the EOS in Eq. (18) with 5/3. With our
EOS andh = b = 1/4thistestis more demanding since the jumps in the density at the shc
wave front and at the CD are stronger in our case, but the difference is not too essern
To compare the results we increased the number of zones to 200, as in [30], although
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FIG. 4. The result for the test considered in [29, 30].

resolution for 100 zones appears sufficient. Rough comparison shows that the jumps
better resolved when the Godunov scheme with the exact Riemann solver is used (see |
and analogous figures in [29, 30]).

To check the computational efficiency we also performed a 2D simulation for a relativ
tic jet. Through the upper boundary of the rectangular computational volume (see Fig.
the jet is injected starting from the initial time instant 0. The computational volume is
400A x 750A;the jet widthis 4@. The jet speed is.995c, which corresponds to a Lorenz
factory ~10. The jetis injected into a gas with a dengify = 450 while the jet densitin
the original frame of referencis p; = 45. The pressure is assumed to be very low in botl
the ambient medium and the injected jBt£ 0.01).

The density distribution is displayed in Fig. 5 for a time instast 1300A /c. The
resolution of the vortex-shock structure in the head of the jet and the Kelvin—Helmho
instability at the jet surface and at the cocoon boundary is good enough. To comy
the results with the numerous publications on relativistic jet simulation see, e.g., [31] ¢
the papers cited there, as well as [33]. The “dangerous” temperBftrre- 0.1 at which
the quantitative accuracy of the interpolated EOS is not very good exists only within |
head shock wave front, because behind the shock wave and in the jet matter the temper
is significantly higher, and in front of the shock wave the matter is cold and the input frc
the thermal energy is negligible. It should be mentioned that within the shock front ide
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FIG. 5. The density pattern produced by a relativistic jet propagation through a dense medium. For be
resolution of the distribution details we show all the density levels which exceed thepglee 600 in white;
actually the maximum density js..x ~ 1.8 - 10°, while the density grey-scale in the figure is restricted by the
Valuep“m.

hydrodynamics is not applicable, so that the choice of an EOS for the matter inside of
front is meaningless.

Using a Pentium Il 400 desktop computer we get better performancé @ per cell
per time step) in this 2D test than is usually achieved with big computers.

Thus the second order Godunov scheme is simple and efficient. It allows us to |
reasonably large values of the time st = 0.7-0.8) and to obtain high-quality results
using a moderate desktop computer.
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The programing task is trivial; actually we have used the existing code based on

second order Godunov scheme famrelativistic CFDand have transformed it code for
the relativistic CFD by making minor changes.

9. CONCLUSION

We constructed a simple and efficient Godunov scheme for relativistic CFD. A key po

is to make an appropriate choice of an approximation for the equation of state of matte
relativistic temperatures.
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